DEFINIZIONE E CARATTERISTICHE DI UN FARMACO BIOLOGICO

Farmaco biologico/biotecnologico

Farmaco il cui principio attivo è rappresentato da una sostanza (generalmente una proteina ad alto peso molecolare) prodotta naturalmente da un organismo vivente (microrganismi o cellule animali) (farmaco biologico propriamente detto) oppure farmaco derivante da una sorgente biologica attraverso l'utilizzo delle tecniche del DNA ricombinante (farmaci biotecnologici).

Caratteristiche di un farmaco biologico

- Molecola di dimensioni molto grandi e molto complessa
- L'azione farmacologica è in funzione della composizione molecolare, della sua forma e struttura tridimensionale
- Lo sviluppo richiede l'identificazione di una nuova proteina o altra entità chimica
- Le tecniche di produzione sono complesse e dipendono da:
 - Substrato biologico/organismo (cellula ospite utilizzata, plasmidi impiegati per trasformare/distribuire la cellula ospite)
 - Fattori ambientali
 - Materiale e condizioni di crescita/sostenimento
 - Possibile manipolazione genetica
 - Metodiche di estrazione e purificazione
- Per l'autorizzazione all'immissione in commercio si valutano gli studi relativi alla tossicologia, all'efficacia clinica e alla sicurezza

FARMACI DI SINTESI TRADIZIONALI VS FARMACI BIOLOGICI/BIOTEcnologici
Dimensioni relative

Fasiprol 1,2	13	Trestuzumab (Herceptin)	6,470
Simvastatin 3,4	25	Etanercept (Enbrel)	2,224
Valsartan 5,6	68	EPO	815

Complessità dei farmaci biologici

- **Etanercept**
- **Trastuzumab**

Proteina dimero di due sottocisti della HLA9I, utilizzata come marcatore di tracce di attività da parte di un farmaco biologico che lega il ligando del recettore. Esempio di fattore di crescita tumorale umano di 75 kD (p75) associato alla porzione extracellulare della IgG1 umana.

Farmaci biologici: caratteristiche intrinseche e rischi associati

Caratteristiche
- **Struttura biologica**
 - Immunogenicità: l'immunogenicità di un farmaco biologico può comportare reazioni di effetto terapeutico (es.: formazione di anticorpi anti-farmaco), insorgenza di ADN clonato nello stesso, autoimmunità nei confronti di proteine endogene.
- **Utilizzo di sistemi cellulsici per la produzione del farmaco**
 - Rischio di contaminazione con materiali derivanti del sistema cellulare utilizzato.
- **Vivacità e complessità del processo di produzione e purificazione**
 - L'elevata vicinanza con i processi produttivi può comportare importanti variazioni nel profilo di sicurezza.

Rischi associati
- **Negatività**
- **Patologie neuroimmunologiche**
- **Patologie neurologiche**
- **Patologie dermatologiche**
- **Pepnicinabilità**
- **Immunogenicità**

Farmaci biologici: principali problematiche di sicurezza

- **Infezionali**
 - Anti-TNFα e insorgenza di infezioni opportunistiche e di pravi infestanti batterici.
- **Patologie autoimmunologiche**
 - Anti-TNFα e insorgenza di patologie autoimmunorevulsive (es.: psoriasi, artrite reumatoide, spondiloartrite) e organo-specifiche (es.: epatite autoimmune, neuropatie periferiche).
- **Patologie tumorali**
 - Anti-TNFα e insorgenza di infezioni.
- **Immunogenicità**
 - Formazione di anticorpi contro il TNFα con conseguente neutralizzazione, aumentata efficienza del farmaco e fatto termosensibile.
- **Cardiotoxicità**
 - Ssc anticorpi monoclonali (trastuzumab, cetuximab, panitumumab e bevacizumab) che inibiscono la crescita del tumore e che sono stati associati a eventi avversi di natura cardiaca.
- **Vascolarità cutanea**
 - Anticorpi monoclonali anti-EGF e vascolarità cutanea.
"Il processo è il prodotto"

A differenza dei farmaci tradizionali ottenuti per sintesi chimica, la struttura molecolare dei farmaci biologici è strettamente dipendente dal processo di produzione che può durare mesi e che comprende tappe complesse.

La variabilità intrinseca delle molecole e la complessità delle tecniche di produzione rendono i farmaci biologici particolarmente difficili da caratterizzare e da riprodurre, a tal punto che differenze possono sussistere anche tra i lotti di uno stesso prodotto ottenuto con le stesse metodiche di produzione.

Un caso esemplificativo ...

Le specialità medicinali contenenti tossina botulinica di tipo A (Botox®, Dysport® e Xeomin®) sono medicinali biologici distinti, nonostante abbiano un identico codice ATC (M03AX01).

Tali specialità sono state autorizzate, infatti, sulla base di differenti dossier registrativi ciascuno dei quali completo di dati farmaceutici, pre-clinici e clinici come farmaci biologici.

I processi di produzione sono diversi

Tutte le preparazioni di BT sono di origine biologica. La cultura di Clostridium botulinum, tessuta in condizioni di anaerobiosi, libera il complesso botulinico presente che viene attivato da proteasi extracellulari. Dopo aver raggiunta la concentrazione massima di BT, la cultura viene inattivata per ozonizzazione. In seguito la BT viene purificata.

L’intero processo di produzione (tra il lotto e zappo di Clostridium da cui ha origine la coltura cellulare sia il processo di purificazione) è differente per ciascuna specialità.
Non interscambiabilità delle specialità contenenti tossina botulinica di tipo A

La non interscambiabilità dipende da:
- diverso processo di produzione (temperatura, pressione, protezione, conservazione),
- diversa struttura,
- diverso peso molecolare,
- diversa distribuzione/diffusione,
- diversa curva dose-risposta,
- diverso rapporto DL50/DLD50,
- diversa potenza,
- diversa durata d'azione,
- diverso diadema terapeutico,
- diverso profilo di efficacia e sicurezza,
- diversa composizione in escipienti,
- diverso dosaggio,
- diverso indicazioni terapeutiche autorizzate.

Ogni prodotto di origine biologica è unico

Il Brevetto

è lo strumento giuridico con il quale viene conferito a chi ha realizzato l'invenzione il monopolio temporaneo di sfruttamento dell'invenzione, consistente nel diritto di escludere i terzi dall'utilizzarla e trarne profitto nel territorio dello Stato concedente, entro i limiti e alle condizioni previste dalla legge.

La tutela brevettuale consente, altresì, di vietare a terzi di produrre, usare, commercializzare, vendere e/o importare il prodotto a cui si riferisce l'invenzione.

QUANTO DURA UN BREVETTO?

Il brevetto, in campo farmaceutico, dura 20 anni a partire dalla data di deposito e non è rinnovabile.

La protezione può, però, essere prolungata (per non più di 5 anni)* su esplicita richiesta del titolare in funzione della data nella quale è stata ottenuta l'autorizzazione, da parte dell'Autorità Sanitaria, all'introduzione sul mercato del farmaco relativo.

* La durata della protezione è uguale al periodo detratto di 5 anni, compresa tra la data di brevetto e l'autorizzazione all'introduzione in commercio.

Regolamento europeo CE n.1782 del 2002

WWW.SUNHOPE.IT
FARMACO EQUIVALENTE (GENERICO)

Il farmaco generico è definito come "un medicinale a base di uno o più principi attivi prodotti industrialmente e non protetti da brevetto o da certificato protettivo complementare, identificato dalla Denominazione Comune Internazionale (DCI) del principio attivo (o, in mancanza, dalla denominazione scientifica del medicinale) seguita dal nome del titolare dell'ATC e bioequivalente rispetto a una specialità già autorizzata con la stessa composizione qualit-quantitativa in principi attivi, la stessa forma farmaceutica e le stesse indicazioni terapeutiche".

Ref: DL 333 AV 2006/96

Farmaci con brevetto scaduto

- **Farmaci tradizionali**
 - Farmaci biologici/biotecnologici
 - Farmaci generici/bioequivalenti
 - Farmaci biosimilari

Farmaco bioequivalente o generico

- La tecnica di produzione è generalmente la stessa del farmaco originale.
- Il processo di produzione è altamente standardizzato.
- Le analisi previste possono verificare completamente l'uguaglianza del farmaco bioequivalente con il farmaco originale.
- I contaminanti sono quantificabili.
- In rare occasioni, le formazioni possono variare e influenzare la bioequivalenza.
- Modifiche relative al profilo di efficacia clinica e tollerabilità sono minime.

FARMACO GENERICO E SPECIALITA' DI RIFERIMENTO

Il farmaco generico è bioequivalente alla specialità medicinale da cui deriva (ORIGINATOR) e quindi perfettamente intercambiabile con essa a condizione che:

- contenga la stessa quantità e qualità di principi attivi (sono ammesse solo piccole variazioni negli occidenti);
- risulti bioequivalente da un punto di vista clinico (quindi uguali per assorbimento, livelli ematici, permanenza in circolo ed eliminazione);
- sia sovrapponibile per efficacia clinica.
- venga commercializzato senza marchio, con il nome del principio attivo seguito dal nome dell'Adenda, a un prezzo inferiore di almeno il 20%.

Vantaggi dei farmaci bioequivalenti

Il principale vantaggio è la riduzione dei prezzi dei farmaci a brevetto scaduto

Tale risparmio libera risorsa, che potrebbero essere utilizzate per rendere più disponibili i farmaci innovativi, senza rinunciare a terapie ormai consolidate.

Farmaci con brevetto scaduto

Farmaci tradizionali

Farmaci biologici/biotecnologici

Farmaci generici/equivalenti

Farmaci biosimilar

Farmaci biosimilar

Si definiscono biosimili quei farmaci biologici/biotecnologici il cui principio attivo è analogo, ma non identico per caratterizzazione e produzione, a quello del medicinale di riferimento.

Con il termine biosimile viene quindi indicato un farmaco simile (o non indentico) ad un farmaco biologico già autorizzato all'immissione in commercio e per il quale sia scaduta la copertura brevettuale.
Il biosimilare e il suo prodotto di riferimento, essendo ottenuti mediante processi produttivi inevitabilmente differenti, non possono essere identici, ma devono essere simili in termini di qualità, efficacia e sicurezza.

Processi di produzione differenti danno origine a prodotti differenti
Il processo di produzione del biosimilare è differente da quello del farmaco originatore

Farmaci biosimili: produzione e sicurezza
- La replicazione del processo di produzione può essere difficile se non impossibile perché il produttore del farmaco originatore può detenere il brevetto relativo allo specifico processo di produzione
- Le differenze nel processo di produzione possono determinare un differente profilo di sicurezza del farmaco biosimilare rispetto all'originatore

Farmaci "bio-better"
In taluni casi è possibile che il farmaco biosimilare possa essere derivato da processi produttivi più innovativi rispetto a quelli del farmaco di riferimento, tali da far sì che il prodotto biosimilare presenti profili di efficacia e di sicurezza persino superiori rispetto all'originatore.
Ci si riferisce a tali prodotti come "bio-better".
Farmaco biosimilare

- La tecnica di produzione può subire delle variazioni rispetto al farmaco originatore.
- La struttura e la forma del biosimilare può differire rispetto all'originatore.
- Le tecniche di analisi non possono caratterizzare a pieno tali molecole, perché altamente complesse.
- Non è possibile dimostrare che il biosimilare sia ugale all'originatore.
- Vi possono essere differenze contaminanti nel biosimilare in funzione del substrato/organismo utilizzato.
- La formulazione può variare l'effetto del biosimilare.
- Non si possono stabilire variazioni relative al profilo di efficacia clinica e tollerabilità senza studi clinici di supporto.

Differenze tra generico e biosimilare

<table>
<thead>
<tr>
<th>Caratteristiche</th>
<th>Generico¹</th>
<th>Biosimilare²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struttura</td>
<td>Speciale</td>
<td>Copiabile</td>
</tr>
<tr>
<td>Grandezza</td>
<td>Piccola e basso peso molecolare</td>
<td>Grande e alto peso molecolare</td>
</tr>
<tr>
<td>Connettività</td>
<td>Definita</td>
<td>Bibliata</td>
</tr>
<tr>
<td>Processo di produzione</td>
<td>Semplice e volontario</td>
<td>Difuso e volontario e adattabile</td>
</tr>
<tr>
<td>Perso e stabilità</td>
<td>Alta</td>
<td>Estremamente alta</td>
</tr>
<tr>
<td>Immunoigenicità</td>
<td>Bassa</td>
<td>Alta</td>
</tr>
</tbody>
</table>

¹. Biologically similar products are used under special conditions.
². Biosimilars are used under special conditions.

Farmaci con brevetto scaduto

Farmaci con brevetto scaduto:
differenze nelle procedure regolatorie per l'approvazione in commercio

Farmaci tradizionali ➔ Farmaci generici/equivalenti ➔ Farmaci biosimilari

Biorivisibilità

La Procedura di autorizzazione è semplificata rispetto al farmaco originatore

Il produttore di un medicinale equivalente per ottenere l'AIC, è dispensato, salvo casi particolari, dal presentare studi di efficacia e sicurezza in quanto la molecola è già nota.

Quindi, nel dossier di un bioequivalente la parte relativa alla sicurezza non contiene una documentazione originale, bensì un rapporto bibliografico, in cui sono discorsi sinteticamente i risultati degli studi pubblicati sulle varie prove a suo tempo condotte per il medicinale di riferimento.

Devono, invece, essere prodotti dei che dimostrino la qualità (ottenuta secondo le norme di buona fabbricazione) e la bioequivalenza (BE) con il farmaco di riferimento.

La bioequivalenza

Legge 8 aprile 1994, n. 425. (Definizione le caratteristiche del farmaco generico e la validità per ottenere l'AIC)

Profilo cinetico

Il medicinale generico deve risultare bioequivalente rispetto alla proprietà di originario (peso assoluto, stessi indici tossicologici), stessi indici tossicologici, stessi indici farmacologici, stessa velocità di tossicizzazione.

Il range dell'AUC dev'essere compreso tra 80% e 125% rispetto all'originatore.

Definizione

BIOEQUIVALENZA

Due prodotti farmaceutici sono bioequivalenti se sono farmaceuticamente equivalenti e le loro biodisponibilità in termini di velocità e quantità, dopo la somministrazione di una stessa dose molarie, sono simili a tal punto che i loro effetti clinici possono essere considerati essenzialmente gli stessi.

Bioequivalenza e Parametri Farmacodinamici

<table>
<thead>
<tr>
<th>Parametri</th>
<th>FARMACO</th>
<th>FARMACO DI RIFERIMENTO</th>
<th>VARIAZIONE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}</td>
<td>C_{max}</td>
<td>C_{max}</td>
<td>±30%</td>
</tr>
<tr>
<td>AUC</td>
<td>AUC_{ref}</td>
<td>AUC_{ref}</td>
<td>±20%</td>
</tr>
<tr>
<td>T_{max}</td>
<td>T_{max}</td>
<td>T_{max}</td>
<td>±20%</td>
</tr>
</tbody>
</table>

Conc. dell'andamento delle concentrazioni plasmatiche di un farmaco in funzione del tempo.

Biodisponibilità

Rischio e qualità di prodotti farmaceutici, chiarita da un farmaco farmacodinamico, che dimostrano la biodisponibilità del farmaco.
L'iter registrativo è specifico per ciascuna categoria di farmaco biosimilare

L'EMA ha pubblicato delle linee guida:

- generali e specifiche per alcuni aspetti particolari della dimostrazione della biosimilarità nell'ambito della valutazione dei dati di qualità, non clinici e clinici
- specifiche per le singole categorie di medicinali biosimilari (es. eritropoietine, ormoni della crescita, G-CSF, etc.).

Procedura europea di approvazione centralizzata per i farmaci biosimilari

Nell'Unione Europea, tutte le domande di AIC dei medicinali biologici, tra cui i biosimilari, sono esaminate dall'EMA attraverso la procedura centralizzata.

L'EMA è stato il primo ente regolatore ad aver istituito un quadro normativo specifico per il percorso di approvazione dei medicinali biosimilari.

Il quadro normativo europeo ha successivamente ispirato molti paesi in tutto il mondo (Australia, Canada, Giappone, Turchia, Singapore, Sudafrica, Taiwan, USA, nonché l'Organizzazione mondiale della sanità).
Vantaggi dei Farmaci Biosimiliari

Dato la modalità di sviluppo e le procedure di produzione, i farmaci biologici sono caratterizzati da elevati costi.

I farmaci biologici rappresentano una risorsa terapeutica per il trattamento di numerose malattie gravi e debilitanti.

Generalmente sono farmaci a carico del sistema sanitario nazionale.

Analogamente a quanto avviene per i farmaci generici/equivalenti, la commercializzazione dei farmaci biosimili può aumentare la competitività dei mercati e quindi produrre prezzi inferiori per le terapie biologiche a brevetto scaduto.

Differenze nelle procedure regolatorie tra equivalenti e biosimili

<table>
<thead>
<tr>
<th>Generico</th>
<th>Biosimilare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prove richieste</td>
<td>Qualità</td>
</tr>
<tr>
<td>Biocoerentanza</td>
<td>Studi clinici e non</td>
</tr>
<tr>
<td>Vantaggi</td>
<td>Prezzi inferiori</td>
</tr>
</tbody>
</table>